『動学マクロ経済学へのいざない』 正誤表

蓮見 亮

2024年11月7日

初版第1刷正誤表

箇所	(誤)	(正)
p.10 脚注 7	(差替)	(1.9) 式の両辺から k^* を引くと
		$k_{t+1} - k^* = \frac{1 - \delta}{(1+g)(1+n)} (k_t - k^*) + \frac{sk_t^{\alpha} - (g+n+\delta)k^*}{(1+g)(1+n)}$
		となるが, $k_t>k^*$ の場合, $sk_t^{lpha}>s(k^*)^{lpha}=$
		$(g+n+\delta)k^*, \ sk_t^{\alpha} < (g+n+\delta)k_t \ \sharp \ \emptyset$
		$0 < \frac{1 - \delta}{(1 + g)(1 + n)} (k_t - k^*)$ $< k_{t+1} - k^* < k_t - k^*$
		である.したがって k_t は下に有界かつ単調
		減少なので k^* に収束する. $k_t < k^*$ の場合
		も同様に示せる.
p.37 5 行目	局所的に最大値また	局所的 <mark>な</mark> 最大値または最 <mark>小</mark> 値
	は最大値	
p.37 7 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \lambda) = 0$
p.37 下から 4	$\min_{m{x}}$	$\max_{m{x}}$
行目		

p.38 1 行目	局所的に最大値また	局所的な最大値
	は最大値	
p.38 3 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \boldsymbol{\lambda}) = 0$
p.46 脚注 12	(少しの差ではある	(削除)
	か)	
同	(加筆)	また, (2.48) 式の左辺を 0 とおいて K に
		ついて解くことにより, K の上限 $K_{ m max}=$
		$\left(rac{\delta}{A_t} ight)^{rac{\dot{lpha}-1}{lpha}}$ が得られる.
p.50 図 2.9	(差替)	01 0 0 K ₁ 1 K ₁ 2 K ₁ K ₁
p.50	(脚注追加)	図 2.6 の $\Delta C_t = 0$ は、 (2.46) 式の K_{t+1} に
		(2.43) 式の右辺を代入して $C_t (=C)$ につい
		て解くと
		$C = AK_t^{\alpha} + (1 - \delta)K_t - K^*$
		なので,厳密には右上がりの曲線である.
p.50 下から 4	$K_t \to \infty \ (t \to \infty)$	$K_t o K_{ m max} \; (t o \infty)$ となるが (脚注 12%
行目	となるが,	照),
p.71 2 行目	と (4.27) 式	(削除)
p.122 (6.41)	$, \alpha \in \mathbb{R}$	(削除)
式		
p.138 (6.98)	$\ln(C_t) + \mu L^{\gamma+1}$	$\ln(C_t) - \mu L^{\gamma+1}$
式		
p.148 3 行目	$\max_{\boldsymbol{\pi}, \hat{\boldsymbol{x}}}$	$\max_{\hat{i},\pi,\hat{x}}$
p.150 10 行目	粘着的	粘着性

p.151 (7.22)	\max_{π_t, \hat{x}_t}	$\max_{\hat{i}_t, \pi_t, \hat{x}_t}$
式		
p.158 (7.52)	$ \sum_{i=0}^{\infty} \eta \left(\frac{\varrho}{1-\varrho} \right) \pi_{t+i}^{2} $	$\sum_{i=0}^{\infty} \eta\left(\frac{\varrho}{1-\varrho}\right) \beta^{i} \pi_{t+i}^{2}$
式1行目		
同式2行目	$\left(\frac{\eta\varrho}{1-\varrho}\right)\sum_{i=0}^{\infty}\pi_{t+i}^{2}$	$\left(\frac{\eta\varrho}{1-\varrho}\right)\sum_{i=0}^{\infty}\beta^{i}\pi_{t+i}^{2}$
p.158 (7.53)	$\sum_{i=0}^{\infty} \pi_{t+i}^2$	$\sum_{i=0}^{\infty} eta^i \pi_{t+i}^2$
式		
p.168 下から	ボレル集合族 B	\mathbb{R} 上のボレル集合族 \mathcal{B}
5 行目		
p.190 下から	ただし、次節の例で	(削除)
2 行目	は R は $\boldsymbol{\theta}$ に依存し	
	ない.	
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
p.192 (8.72)	$\left \begin{array}{cccc} R = \left[0 & 0 & 0 \right] \end{array} \right $	(削除)
式		
	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
p.190 下から	求まらないので,	求まらない <mark>場合がある</mark> ので,
3 行目		
p.192 下から	Blanchard and	Sims の方法
2 行目	Kahn の方法	
p.193 (8.73)	R	$R(oldsymbol{ heta})$
式		
p.199	[2] に追記	(邦訳:和合肇・松田安昌 訳『状態空間モデ
		リングによる時系列分析入門』シーエーピー
		出版, 2004.)
同	[11] に追記	(邦訳:赤堀次郎・原啓介・山田俊雄 訳『マ
		ルチンゲールによる確率論』培風館,2004.)

初版第2刷正誤表

p.10 脚注 7	(差替)	(1.9) 式の両辺から k^* を引くと
		$k_{t+1} - k^* = \frac{1 - \delta}{(1+g)(1+n)} (k_t - k^*) + \frac{sk_t^{\alpha} - (g+n+\delta)k^*}{(1+g)(1+n)}$
		となるが、 $k_t > k^*$ の場合、 $sk_t^{\alpha} > s(k^*)^{\alpha} =$
		$(g+n+\delta)k^*, \ sk_t^{\alpha} < (g+n+\delta)k_t \ \sharp \ 0$
		$0 < \frac{1 - \delta}{(1 + g)(1 + n)} (k_t - k^*)$ $< k_{t+1} - k^* < k_t - k^*$
		である.したがって k_t は下に有界かつ単調
		減少なので k^* に収束する. $k_t < k^*$ の場合
		も同様に示せる.
p.37 5 行目	局所的に最大値また	局所的 <mark>な</mark> 最大値または最 <mark>小</mark> 値
	は最大値	
p.37 7 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \lambda) = 0$
p.37 下から 4	$\min_{m{x}}$	$\max_{m{x}}$
行目		
p.38 1 行目	局所的に最大値また	局所的な最大値
	は最大値	
p.38 3 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \boldsymbol{\lambda}) = 0$
p.122 (6.41)	$, \alpha \in \mathbb{R}$	(削除)
式		
p.148 3 行目	$\max_{\boldsymbol{\pi}, \hat{\boldsymbol{x}}}$	$\max_{\hat{i},\pi,\hat{x}}$
p.150 10 行目	粘着的	粘着性
p.151 (7.22)	\max_{π_t, \hat{x}_t}	$\max_{\hat{i}_t, \pi_t, \hat{x}_t}$
式		
p.190 下から	求まらないので,	求まらない <mark>場合がある</mark> ので,
3 行目		

p.190 下から	ただし、次節の例で	(削除)
2 行目	は <i>R</i> は <i>θ</i> に依存し	
	ない.	
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
p.192 (8.72)	, R =	(削除)
式	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
p.192 下から	Blanchard and	Sims の方法
2 行目	Kahn の方法	
p.193 (8.73)	R	$R(oldsymbol{ heta})$
式		
p.199	[2] に追記	(邦訳:和合肇・松田安昌 訳『状態空間モデ
		リングによる時系列分析入門』シーエーピー
		出版, 2004.)
同	[11] に追記	(邦訳:赤堀次郎・原啓介・山田俊雄 訳『マ
		ルチンゲールによる確率論』培風館, 2004.)